Chem. Ber. 119, 338-348 (1986)

Beiträge zur Chemie des Bors, 166¹⁾

Kernresonanz- und He(I)-photoelektronenspektroskopische Untersuchung an Diisopropyl- und Di-*tert*-butylboranen

Heinrich Nöth* und Helene Prigge

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2

Eingegangen am 8. Mai 1985

Die kernresonanzspektroskopischen Daten (¹H, ¹¹B, ¹³C, ¹⁴N) einer Reihe von Diisopropylund Di-*tert*-butylboranen belegen, daß erstere mehr den Dimethyl- und Diethylboranen entsprechen, sterische Effekte somit nur einen geringen Einfluß haben. Diese kommen hingegen bei Di-*tert*-butyl(diorganylamino)boranen zum Tragen. Mit zunehmender Sperrigkeit der Amino-Gruppe wird eine orthogonale Einstellung der R₂N-Gruppe zur C₂BN-Ebene angestrebt. He(I)-PE-Spektren bestätigen die aus NMR-Daten abgeleiteten Folgerungen.

Contributions to the Chemistry of Boron, 166¹⁾

NMR and He(I) PE Spectroscopic Studies on Diisopropyl- and Di-tert-butylboranes

NMR data (¹H, ¹¹B, ¹³C, ¹⁴N) of a series of diisopropyl- and di-*tert*-butylboranes indicate that the former correspond favourably with dimethyl- and diethylboranes. Steric effects, therefore, are not very pronounced. However, di-*tert*-butyl(diorganylamino)boranes deviate from a planar C_2BNC_2 conformation; the more bulky the R_2N group the stronger is the deviation, approaching an orthogonal conformation. He(I) photoelectron spectra confirm the conclusions drawn from NMR data.

Dimethyl- und Diethylborane sind schon lange bekannt²⁻⁴⁾ und eingehend spektroskopisch untersucht⁵⁾. Im Gegensatz dazu sind bisher nur wenige Diisopropylund Di-*tert*-butylborane beschrieben worden^{6,7)}, bei denen sterische Effekte nicht nur die Reaktivität, sondern auch die Struktur beeinflussen können. Nach Modellbetrachtungen hat man wesentliche Unterschiede vor allem bei Alkoxydiorganyl- und Aminodiorganylboranen zu erwarten. Beispielsweise besitzt (CH₃)₂B – N(CH₃)₂ eine planare Gerüststruktur A⁸; für [(CH₃)₃C]₂B – N(CH₃)₂ ist hingegen eine orthogonale Einstellung der Aminogruppe gemäß B zu erwarten. Die damit verbundene Änderung der Bindungsverhältnisse müßte in den spektroskopischen Eigenschaften ihren Niederschlag finden.

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0101-0338 \$ 02.50/0 Nachdem wir Wege zur isomerenfreien Einführung der *tert*-Butyl-Gruppe in Borane gefunden haben und damit eine Reihe von Di-*tert*-butylboranen darstellen konnten¹, berichten wir nachstehend über die Ergebnisse NMR- und PE-spektroskopischer Untersuchungen an diesen Verbindungen.

¹¹B-NMR-Spektren

Die ¹¹B-chemische Verschiebung trigonal koordinierter Borane ist weitgehend eine Funktion der π -Elektronendichte am Bor-Atom⁹⁻¹⁴). Dies gilt insbesondere dann, wenn sich in Verbindungen BR_{3-n}(XY)_n nur der Zweitsubstituent Y ändert. Die für die Abschirmung wichtige mittlere Anregungsenergie ΔE wird vor allem durch die Energie von $\pi\pi^*$ -Übergängen bestimmt¹⁵). Diese einfache Interpretation von δ^{11} B gilt allerdings nur mehr bedingt, wenn man die Substituenten X innerhalb einer Periode variiert, und sie versagt, wenn sich X innerhalb einer Gruppe des Periodensystems ändert. Zu einer qualitativ befriedigenden Beschreibung von δ^{11} B kommt man in diesen Fällen jedoch, wenn man σ -Effekte mitberücksichtigt¹⁶).

Substituenteneffekte, die borständige Organylgruppen R hervorrufen, kann man durch Vergleich der δ^{11} B-Werte analoger Organylborane R₂BR', R₂BX und RBX₂ aufzeigen¹⁷⁾. Die Verfügbarkeit von Isopropyl- und *tert*-Butylboranen erlaubt es nun, den Einfluß der Verzweigung der Organylgruppe R auf δ^{11} B zu untersuchen. Dieser sollte dem β-Effekt der ¹³C-NMR-Spektroskopie entsprechen, der meist eine Tieffeldverschiebung¹⁸⁾ verursacht. In der ¹¹B-NMR-Spektroskopie scheint er eine Hochfeldverschiebung hervorzurufen. Einige wenige δ^{11} B-Daten für Triorganylborane mögen diese Aussage belegen: B(CH₃)₃ δ = 86.3, B(C₂H₅)₃ 86.8, B[CH(CH₃)₂]₃ 86.0, B[C(CH₃)₃]₃ 83.1, B(C₆H₁₁)₃ 87.0, (C₆H₁₁)₂BC(CH₃)₃ 83.0¹⁸).

Den Daten der Tab. 1 entnimmt man, daß in der jeweiligen Reihe von Diorganylborhalogeniden die Variation der Organyl-Gruppe δ^{11} B nur wenig beeinflußt. Bei den Fluoriden zeichnet sich ein Trend zu einem geringfügigen Abschirmungsgewinn mit steigender Verzweigung der Organyl-Gruppe ab, während bei den Bromiden, ausgeprägter noch bei den Iodiden, ein Abschirmungsverlust resultiert. Wesentlich deutlicher fällt hingegen eine Hochfeldverschiebung für die *tert*-Butylund Di-*tert*-butylborane bei den Alkoxyderivaten aus. Abb. 1 zeigt dies sowohl für R'₂BX als auch R'BX₂ auf, und man erkennt, daß bei den Alkoxydialkylboranen der Effekt der *tert*-Butyl-Gruppe größer als bei den Dialkoxyalkylboranen ist. In beiden Fällen ist der Bor-Kern in den *tert*-Butoxy-Verbindungen stärker abgeschirmt als in den Methoxyboranen. Der Grund dafür könnte in einer sterisch bedingten Aufweitung des BOC-Bindungswinkels und verbunden damit einer besseren BO- π -Bindung liegen; mangels direkter Strukturinformation ist diese Annahme aber ebenso spekulativ wie Überlegungen zu einer bevorzugten Konformation.

Bei den Aminodialkylboranen $R_2B - NR'_{2-n}H_n$ kann man zwei Gruppen unterscheiden: In der ersten Gruppe beeinflußt die Verzweigung der Alkylgruppe R $\delta^{11}B$ nur wenig; dabei zeigen die *tert*-Butyl-Verbindungen stets eine etwas bessere Abschirmung als die entsprechenden Diisopropylborane, während von den Methyl- über die Ethyl- zu den Isopropylboranen ein Abschirmungsverlust zu verzeichnen ist, der mit $\Delta^{11}B$ 1-3 ppm allerdings sehr klein ausfällt. In der zweiten

R		(CH ₃)	3 ^C		(CH ₃) ₂ HC		н _з ссн	2	^{CH} 3	
x	δ ¹¹ _B	δ ¹³ c	§ ¹⁴ N	δ ^{1 1} Β	δ ¹³ c	δ ¹⁴ N	δ ^{1 1} β	δ ¹⁴ N	δ ¹¹ β	8 ¹⁴ N
F	57.5	24.4	-	59.0		-	59.6			
C1	77.7	29.5	-	77.8	25.0	-	78.0			
Br	82.4	30.4	-	82.4	26.5	-	81,9			
I	87.7	27.8	-	86.1	-	-	84.4			
СН ₃ 0	51.0	24.4	-	53.3	16.0	-	53.6			
(CH ₃) ₃ CO	49.9	25.0	-	52.0	-	-	52.0			
H ₂ N	48.7	22.7	-298	49.5	17.5	-303	48.7	-295	47.1	-293
CH 3 HN	46.5	22.9	-293	47.5	16.4/14.7	-297	46.8	-290	45.7	-289
(CH ₃) ₂ HCNH	45.2	-	-251	46.4	17.2/14.9	-258	-	-	45.3	-259
(CH3)3CNH	45.9		-245	47.6	15.1/17.1	-253	-	-	45.1	~244
(CH ₃) ₃ SiNH	53.1	23.9	-282	53.3	15.9	-287	53.0	-288	51.6	-282
(CH ₃) ₃ SnNH	51.6	24.2	-	-	-	-	-	-	-	-
C ₆ H ₅ NH	47.2	22.5	-256	49.3	15.9	-263	-	-	48.0	~255
(CH ₃) ₃ C] ₂ BNH	60.9	25.6		58.1	18.0					
[(CH ₃) ₂ HC] ₂ BNH	61.4	25.4								
(CH ₃) ₂ N	49.9	24.8	-296	45.6	17.0	-292	45.7	-302	44.6	-296
(c ₂ H ₅) ₂ N	50.9	-	-	46.1	16.4	-258	45.9	-262	44.9	~295
(CH ₃) ₂ HC] ₂ N	50.5	-	-	45.9	-	-	-	-	44.0	-
(C ₆ H ₅) ₂ N	60.1	27.8	-	48.5		-	-	-	49.6	-
C4H4N	67.0	26.8	-197	56.7	17.9	-192	56.8	-189	56.1	~186
^C 12 ^H 8 ^N	73.6			61.9			-		58.9	
С1•ру	14.3	28.0	-132.8	14.0	20.4	-135.4	ļ			
Br∙py	18.2									

Tab. 1. NMR-Parameter ($\delta^{11}B$, $\delta^{13}C$, $\delta^{14}N$) einer Reihe von Diorganylboranen R'₂BX (Daten der Diethyl- und Dimethylborane entstammen Lit.¹⁸), C₄H₄N = Pyrrolyl, C₁₂H₈N = Carbazolyl)

Gruppe findet man einen Abschirmungsverlust mit steigender Verzweigung von R, wobei dieser bei den Di-*tert*-butyl(diorganylamino)boranen besonders drastisch ausfällt. Die erste Gruppe von Aminoboranen enthält entweder eine NH₂- oder eine NHR-Gruppe, und wir nehmen an, daß die geringen Schwankungen der δ^{11} B-Werte bei gegebener Amino-Gruppe mit der energetisch bevorzugten Koplanarität der Aminoboran-Gerüststruktur C₂BNHC vereinbar sind¹⁹. Zur zweiten Gruppe gehören nur (Dialkylamino)borane R₂B – NR'₂. Die Abschirmung des Bor-Kerns

•

in den Diisopropyl- bzw. Di-*tert*-butyl(diorganylamino)boranen sinkt in der Reihe $R'_2N = N(CH_3)_2 > N(C_2H_5)_2 > N[CH(CH_3)_2]_2 \gg NC_4H_4 \gg NC_{12}H_8$, d. h. mit zunehmendem Raumanspruch bzw. sterischer Wechselwirkung der R'_2N - mit der R_2B -Gruppe. Den beträchtlichen Abschirmungsverlust von 6.5 ppm, den $[(CH_3)_3C]_2B - N[CH(CH_3)_2]_2$ im Vergleich mit $(CH_3)_2B - N[CH(CH_3)_2]_2$ erleidet, führen wir darauf zurück, daß ersteres nicht mehr bevorzugt die Konformation A, sondern im zeitlichen Mittel zunehmend häufiger die elektronisch zwar weniger, sterisch aber günstige Konformation **B** einnimmt. Im Pyrrolyl-Derivat wird letztere noch stärker bevorzugt, und sie sollte im Carbazolyl-Derivat $[(CH_3)_3-C]_2B - NC_{12}H_8$ eingefroren sein, wie Kalottenmodelle nahelegen. Fehlende BN- π -Wechselwirkung macht die R_2N -Gruppe nun zu einem elektronenziehenden Substituenten.

Abb. 1. δ^{11} B-Werte von Alkoxydialkylboranen R'₂BX (links) sowie Dialkoxyalkylboranen R'BX₂ (rechts) in Abhängigkeit von der Verzweigung der Organylgruppe R' (R = CH₃)

¹⁴N-NMR-Spektren

Wird das freie Elektronenpaar an einem sp²-hybridisierten N-Atom eines Aminoborans durch eine BN- π -Bindung beansprucht, dann wird der ¹⁴N-Kern als Folge des Verlustes an Elektronendichte entschirmt²⁰. In der Reihe der Aminoborane findet man daher im allgemeinen eine lineare Abhängigkeit zwischen δ^{11} B und $\delta^{14}N^{20,21}$. Trendmäßig gilt diese Beziehung auch für Aminodiisopropyl- und Aminodi-*tert*-butylborane mit Amino-Gruppen geringen sterischen Anspruchs. Während bei den Aminodiisopropylboranen die ¹⁴N-Kerne stärker als bei den vergleichbaren Aminodi-*tert*-butylboranen abgeschirmt sind (vgl. die Daten der Tab. 1), enthalten die Di-*tert*-butyl(diorganylamino)borane einen deutlich stärker abgeschirmten ¹⁴N-Kern. Besonders instruktiv ist hier ein Vergleich der δ^{11} B- und δ^{14} N-Werte von *N*-(Dimethylboryl)- und *N*-(Di-*tert*-butylboryl)pyrrol bzw. -carbazol. Für die Pyrrole beträgt Δ^{11} B – 10.9 und Δ^{14} N + 8 ppm, für die Carbazole Δ^{11} B jedoch – 15.1 und Δ^{14} N 59 ppm! Damit bestätigen die ¹⁴N-NMR-Daten die aus den ¹¹B-NMR-Werten abgeleitete Folgerung, daß die Verbindungen [(CH₃)₃C]₂B-NR₂ Aminoboranen der Konformation **B** entsprechen.

¹H-NMR-Spektren

Nach Protonenresonanzuntersuchungen an zahlreichen Dimethyl- und Diethylboranen $R_{3-n}BX_n$ hängt die Elektronegativität des Bors nicht nur von der des Substituenten X, sondern auch von der π -Rückbindung zwischen dem Bor-

	\$ ¹³ c		1 _{J(} 13 _C 1 _{H)}	\$ ¹ н			3 _{.1(} 1 _H 1 _H)
X	BC- <u>C</u>	x	вс <i>-<u>с</u></i>	CHR2	C <u>H</u> R ₂	x	CHR2
NH2	19.19	-	125.5 (6.0)	0.91	1.13	3.27	+
NHR	18.99 19.74	28 .94	-	0.94 0.86	1.12 1.16	2.68 ^{a)}	++ 6.5-7.0
NHCHR ₂	19.62 19.96	26.39 43.04					
NHCR3	19.11 20.89	32.84 49.20	124.6 125.1	0.91 1.03	1.25	1.12 ^{D J}	7.2
NHSiR ₃	18.96 20.08	1.97 ^{C)}	123.0 125.0	0.88 0.99	1.31	0.09"'	7.0
NHC ₆ H ₅	19.01 19.80	143.56 123.96 124.68 128.94					
NR ₂	19.11	39.86 ^{e)}	124.2 ^f)	1.05	1.39	2.55	7.0
N(CH2R)2	19.52	42.87 ^{g)} 16.42 ^{h)}	125.51)	1.02	1.24	2.94 ^{k)} 0.95 ^{k)}	6.1
NC4H4	19.03	1)	125.5	1.03	1.79	6.29 7.10	7.3
^{NC} 12 ^H 8	17.98	m)	126.1	1.09	2.44	7.15 7.89 ⁿ) 7.57 ⁿ)	7.3
OR	18.02	50.23	124.3	0.93	1.11	4.03	6.1
OCR3	18.56	67.91 31.04		0.87	+	1.30	6.1
он	18.08	-	-	0.97	1.25+	4.81	5.5
F ⁰⁾	16.41	-	-	0.91	+	-	+
C1	17.88	-	-	1.07	1.55	-	6.8
Br	18.14	-	-	0.92	1.51	-	6.1
Ih)	19.08	-	-	0.90	1.49	-	6.6
С1•ру	19.74 18.91	145.01 140.14 124.25		0.83	1.38	6.60 6.94 8.53	7.1

Tab. 2. ¹H- und ¹³C-NMR-Daten (ohne borgebundene C-Atome (siehe Tab. 1)) von Diisopropylboranen *i*Pr₂BX. δ -Werte in ppm, *J* in Hz. Wenn nicht anders angegeben, wurde in C₆D₆-Lösung gemessen (NC₄H₄ = Pyrrolyl, NC₁₂H₈ = Carbazolyl; R = CH₃)

⁺ Kopplung bzw. Signal wegen zu geringer Aufspaltung (90-MHz-Gerät) nicht mehr eindeutig erkennbar.

⁺⁺ Durch gehinderte Rotation Überlagerung von Signalen, daher sind die angegebenen

Werte Näherungswerte. ^{a)} $J(\text{HNCH}) = 6. - {}^{b)} \delta^{1}\text{H} (\text{NH}) = 4.01. - {}^{c)} J({}^{13}\text{C}^{1}\text{H}) = 118.1. - {}^{d)} \delta^{1}\text{H}(\text{NH}) 3.5. - {}^{c)} IJ({}^{13}\text{C}^{1}\text{H}) = 134.1. - {}^{0} \delta^{1}\text{H}(\text{NH}) = 5.2. - {}^{g)} IJ({}^{13}\text{C}^{1}\text{H}) = 131.1, {}^{2}J({}^{13}\text{C}^{1}\text{H}) = 5.2. - {}^{b)} IJ({}^{13}\text{C}^{1}\text{H}) = 125.5, {}^{2}J({}^{13}\text{C}^{1}\text{H}) = 5.6. - {}^{i)} {}^{3}J(\text{HC}-\text{CH}) = 6.0. - {}^{k)} {}^{3}J({}^{14}\text{H}) = 7. - {}^{i)} \delta^{13}\text{C}, {}^{1}J({}^{13}\text{C}^{1}\text{H}) = 125.5, {}^{2}J({}^{13}\text{C}^{1}\text{H}) = 5.6. - {}^{i)} {}^{3}J(\text{HC}-\text{CH}) = 6.0. - {}^{k)} {}^{3}J({}^{14}\text{H}) = 7. - {}^{i)} \delta^{13}\text{C}, {}^{1}J({}^{13}\text{C}^{1}\text{H}) = 125.5, {}^{2}J({}^{13}\text{C}^{1}\text{H}) = 5.6. - {}^{i)} {}^{3}J(\text{HC}-\text{CH}) = 6.0. - {}^{k)} {}^{3}J({}^{14}\text{H}) = 7. - {}^{i)} \delta^{13}\text{C}, {}^{1}J({}^{13}\text{C}^{1}\text{H}) = 125.5, {}^{2}J({}^{13}\text{C}^{1}\text{H}) = 5.6. - {}^{i)} {}^{3}J(\text{HC}-\text{CH}) = 6.0. - {}^{k)} {}^{3}J({}^{14}\text{H}) = 7. - {}^{i)} \delta^{13}\text{C}, {}^{1}J({}^{13}\text{C}^{1}\text{H}) = 125.5, {}^{2}J({}^{13}\text{C}^{1}\text{H}) = 125.7, {}^{2}J({}^{13}\text{C}^{1}\text{H}) = 125.7, {}^{2}J({}^{13}\text{C}^{1}\text{H}) = 5.2. - {}^{i)} {}^{3}J(\text{HC}-\text{CH}) = 6.0. - {}^{k)} {}^{3}J({}^{14}\text{H}) = 7. - {}^{i)} \delta^{13}\text{C}, {}^{1}J({}^{13}\text{C}^{1}\text{H}) = 125.7, {}^{2}J({}^{13}\text{C}^{1}\text{H}) = 125.7, {}^{2}$

Atom und X ab^{22} . Dabei beeinflußt X in Diethylboranen praktisch nur $\delta^{1}H$ der CH₂-Gruppe. In Ubereinstimmung mit diesen Ergebnissen stehen die ¹H-NMR-Daten der untersuchten Diisopropyl- und Di-tert-butylborane (vgl. Tab. 2 und 3). Dementsprechend ist die Verschiebungsdifferenz $\Delta^{1}H = \delta^{1}H (C(CH_{3})) - \delta^{1}H$ $(CH(CH_3)_2)$ mit +0.07(1) ppm für die meisten Verbindungspaare konstant. Grö-

x	δ ¹³ c		¹ у(¹³ с ¹ Н)	L S'	н
	8C <u>C</u>	X	BC <u>C</u>	CR3	x
NH ₂	29.54	-	123.8	0.97	a)
NHR	29.20 30.30	31.79	-	0.95	2.59 ^b)
NHCHR ₂	29.20 30.92	26.25 44.20	-	c)	c)
NHCR3	30.12 32.12	33.63 50.18	-	0.85	1.18
NHSiR ₃	30.09	3.23 ^d)	123.9 ^{e)}	1.07	0.17
NHSnR ₃	30.63	- 3.04 ^{g)}	124.5	1.06	0.20
NHC ₆ H5	30.37	144.99 128.82 128.62 125.62	-	c)	c)
NR ₂ ^h)	31.26 ⁱ⁾	43.98 ^{k)}	124.3	1.10	2.82
N(CH ₂ R) ₂	28.99	34.26 66.57	-	1.10	3.1 0.88 - 1.32M
N(CHR ₂) ₂	28.85	34.39	- 、	1.03	0.83 - 1.6 M
NC4H4	29.06	1)	125.1 ^m)	1.02	6.31(2) 6.71(2)
^{NC} 12 ^H 8	27 .9 6	n)	126.0 ⁰⁾	0.99	7.99 - 8.09 M 7.09 - 7.34 M
N(C6H5)2	31.88	p)	-	1.03	6.37 - 7.17 M
OR ^{h)}	28.60	55.1	-	1.01	3.78
OCR3	29.85	75.95 32.18	-	1.02	1.38
F ⁿ⁾	26.60	-	-	1.00	-
C1	28.50	-	-	1.25	-
Br ^{n)}	28.81	-	-	1.24	-
I, ,	29.50	-	-	1.21	-
С1-ру	31.70	146.1 139.7 123.6	-	1.3	

Tab. 3. ¹H- und ¹³C-NMR-Daten (ohne borgebundene C-Atome (siehe Tab. 1)) von Di-*tert*butylboranen tBu_2BX . δ -Werte in ppm, J in Hz. Wenn nicht anders angegeben, wurde in C₆D₆-Lösung gemessen (NC₄H₄ = Pyrrolyl, NC₁₂H₈ = Carbazolyl; R = CH₃)

^{a)} δ^{1} H(NH₂): nicht sicher beobachtet. – ^{b)} $J_{i}^{(1}$ H¹H) = 6.6. – ^{c)} Nicht gemessen. – ^{d)} $I_{j}^{(13}$ C¹H) = 118.4, ⁴ $J_{i}^{(13}$ C¹H) = 7.3. – ^{e)} $J_{i}^{(13}$ C¹H) = 5.5. – ⁿ Gemessen bei 340 K, bei 303 K zwei Signale bei 30.96 und 30.30. – ^{g)} $I_{j}^{(13}$ C¹H) = 129.0, $I_{j}^{(19}$ Sn¹³C) = 397.7. – ^{b)} In CDCl₃. – ^{b)} $I_{j}^{(13}$ C¹³C) = 30.8. – ^{b)} $I_{j}^{(13}$ C¹H) = 143.7. – ^{l)} δ^{13} C, $I_{j}^{(13}$ C¹H), ²⁻⁴ $J_{i}^{(13}$ C¹H): NC 122.59, 182.1, 6.6; NCC: 110.63; 169.4, 4.8 – 7.7, $I_{j}^{(13}$ C¹³C) = 66.1. – ^{m)} $J_{j}^{(13}$ C¹H) = 5.3. – ^{m)} Von N benachbart aus gezählt: δ^{13} C, $I_{j}^{(13}$ C¹H), ² $J_{j}^{(13}$ C¹H): 142.58, –, 9.11; 113.19, 157.7, 8.2; 120.75, 160.0, 8.2; 125.59, 166.4, 7.6; 119.39, 160.0, 7.6; 128.30. – ^{o)} $J_{j}^{(13}$ C¹H) = 5.0. – ^{p)} δ^{13} C = 151.30, 128.1, 128.80, 124.8.

Bere Abweichungen zeigen nur die Pyrrolylborane ($\Delta^{1}H = -0.01$ ppm) und insbesondere die Carbazolylborane ($\Delta^{1}H = -0.10$ ppm). Dies unterstreicht erneut die Nichtplanarität der betreffenden Di-*tert*-butylborane: die Hochfeldverschiebung belegt, daß die Protonen der Isopropyl-, im zeitlichen Mittel noch stärker die der *tert*-Butyl-Gruppen, vom Ringstrom des Aromatengerüstes der beiden N-

Heterocyclen beeinflußt werden. Würde nämlich nur der negativ induktive Effekt einer zur C₂BN-Ebene senkrecht stehenden Pyrrolyl- bzw. Carbazolyl-Gruppe zum Tragen kommen, dann wäre eine Tieffeldverschiebung und damit ein positives Δ^{1} H zu erwarten. Positive Δ^{1} H-Werte und damit den erwarteten – I-Effekt findet man bei den Halogenboranen [(CH₃)₃C]₂BX, wobei dieser bei der Fluorverbindung mutmaßlich wegen der BF- π -Rückbindung weniger deutlich ausfällt als bei den Chloriden, Bromiden und Iodiden. Hier spielen offenbar zusätzlich paramagnetische Anisotropieeffekte eine Rolle.

¹³C-NMR-Spektren

Aussagekräftiger als die Protonenresonanzdaten sind die ¹³C-chemischen Verschiebungen der *bor*-gebundenen Kohlenstoff-Atome (vgl. Tab. 1), da diese am stärksten von den Änderungen der Elektronendichte am Bor-Atom durch X beeinflußt werden²³⁾. Dies belegen die δ^{13} C-Werte der Tab. 1 – 3, die außerdem zeigen, daß die chemische Verschiebung δ^{13} C der Methylkohlenstoffe der Isopropyl- und *tert*-Butyl-Gruppen nahezu substituentenunabhängig ist. In Analogie zu Alkanen findet man auch bei den Organylboranen α -, β - und γ -Effekte sowie Effekte der Kettenverzweigung auf δ^{13} C²⁴⁾. Die bei Methyl- und Ethylboranen geltende lineare Abhängigkeit zwischen δ^{11} B und δ^{13} C der borständigen C-Atome^{23,25)} trifft auch auf die hier untersuchten Verbindungen, allerdings nur für Substituenten der 1. Achterperiode, zu. Daher sind in Abb. 2 nur die Amino-, Alkoxy- und Fluor-Verbindungen aufgeführt.

Abb. 2. Korrelation der $\delta^{13}C(BC)$ - und $\delta^{11}B$ -Werte von Di-*tert*-butyl- und Diisopropylboranen. Die Parameter der Regressionsgeraden $\delta^{13}C = A + B \cdot \delta^{11}B$ sowie die Summen der Fehlerquadrate S haben die Werte 15.619, 0.163, 5.127 für die *tert*-Butyl-Verbindungen und 6.536, 0.206 und 9.88 für die Isopropylborane

б б

Pyrrolylboran. Dies ist nur mit der bereits diskutierten Konformation **B** erklärbar. Dieser Konformationseffekt äußert sich ferner deutlich auch in den δ^{13} C-Werten der Pyrrolyl-Kohlenstoffe, wie folgende Daten zeigen.

R₂B−N		(RCH ₂) ₂ B-N	(R ₂ CH) ₂ B-N	(R ₃ C) ₃ B-N	HN	$R = CH_3$
¹³ C (2,5)	124.6	124.1	124.7	122.6	118.4	
¹³ C (3,4)	114.2	113.6	114.0	110.6	108.0	

Bei Vorliegen einer BN- π -Wechselwirkung sollte sich ein Aromatizitätsverlust des Pyrrols in einer Tieffeldverschiebung der ¹³C-NMR-Signale äußern. Erst bei der sperrigen *tert*-Butyl-Gruppe erfahren die Signale der C-Kerne des Pyrrols eine Hochfeldverschiebung, die in Di-*tert*-butyl-1-pyrrolylboran zu δ^{13} C-Werten führt, die denen des Pyrrols schon sehr nahekommen. Somit stützen auch diese Daten die diskutierte Konformationsänderung. Diisopropyl-1-pyrrolylboran entspricht hingegen weitgehend den Methyl- und Ethyl-Verbindungen.

He(I)-Photoelektronenspektren

Die NMR-Daten der Aminodiorganylborane sprechen konsistent auf die durch sterische Effekte bedingte Konformationsänderung an. Zunehmende Verdrillung der Amino-Gruppe führt zu einem Abschirmungsverlust am Bor- und einem Abschirmungsgewinn am Stickstoff-Kern. Verbunden damit muß sich die BN- π -Bindung schwächen. Dies äußert sich auch in einer verstärkt auftretenden BN-Bindungsspaltung beim massenspektrometrischen Zerfall²⁶.

Zur Stütze der oben vorgetragenen Argumente wurden die Verbindungen $[(CH_3)_3C]_2B - NH_2$ und $[(CH_3)_3C]_2B - N(CH_3)_2$ sowie einige Vergleichsverbindungen photoelektronen-spektroskopisch untersucht. Abb. 3 zeigt schematisch die Lagen der vertikalen Ionisierungsenergien aus BN- π -Niveaus. Die gemessenen Ionisierungsenergien enthält Tab. 4.

Bei Monoaminoboranen wird das BN- π -Niveau relativ zum n-Niveau des Amins umso stärker abgesenkt, je höher die BN-Bindungsordnung und damit die Stärke der BN- π -Bindung ist. Bei Diaminoboranen wird die Differenz der Energien zwischen nichtbindendem und bindendem BN- π -Niveau maximal, wenn beide Amino-Gruppen koplanar zur CBN₂-Ebene stehen^{27,28}.

Nach Abb. 3 nimmt die Energiedifferenz zwischen den beiden BN- π -Niveaus der Bis(dimethylamino)borane RB[N(CH₃)₂]₂ (R = CH₃, C(CH₃)₃) von 1.52 eV für die Methylverbindung auf 1.25 eV im *tert*-Butylboran ab. Der Energieunterschied ΔE zwischen den beiden Systemen beträgt somit 0.27 eV. Dies entspricht im zeitlichen Durchschnitt einer Zunahme der gleichsinnigen Verdrillung der (CH₃)₂N-Gruppe in der *tert*-Butyl-Verbindung, verglichen mit CH₃B[N(CH₃)₂]₂; für das letztere wurde die Verdrillung der Dimethylamino-Gruppen zu 17.3° bestimmt²⁹. Die Struktur von [(CH₃)₃C]₂B-N(CH₃)₂ ist hingegen noch nicht ermittelt.

Im Gegensatz dazu beträgt die Energiedifferenz ΔE zwischen den entsprechenden Energieniveaus bei den 1,3-Dimethyl-2-organyl-diazaborolidinen -0.1 eV. Dieser Unterschied zu den beiden nichtcyclischen Bis(dimethylamino)boranen ist auf die Starrheit des cyclischen Diaminoboran-Systems zurückzuführen; hinzukommt, daß der Bindungswinkel NBN mit $\approx 108^{\circ}$ klein ist und dadurch bereits eine sterische Entlastung der Wechselwirkung der 1,3-Dimethylgruppen mit der *B*-ständigen Organyl-Gruppe erfolgt³⁰. Auch die Stabilisierung des bindenden BN- π -Niveaus ist mit einer Koplanarität des CBN₂-Gerüsts verträglich und bestätigt damit zugleich, daß die Anhebung des entsprechenden Niveaus in (CH₃)₃CB[N(CH₃)₂]₂ auf Verdrillung der Dimethylamino-Gruppen und damit auf eine Schwächung der BN-Bindung zurückgeht. In Analogie dazu liegt das bindende BN- π -Niveau von [(CH₃)₂C]₂B-N(CH₃)₂ um 0.5 eV höher als das des allplanaren (CH₃)₂B-N(CH₃)₂⁸.

Mit 0.95 eV fällt der Energieunterschied zwischen dem BN- π -Niveau von $[(CH_3)_3C]_2B - N(CH_3)_2$ und $[(CH_3)_3C]_2B - NH_2$ besonders drastisch aus. Er ist aufgrund des +1-Effekts der Methylgruppen nicht erklärbar, denn dieser bewirkt nur einen Energieunterschied von 0.58 eV zwischen $(CH_3)_2B - N(CH_3)_2$ und $(CH_3)_2B - NH_2^{31,32}$. Hieraus folgt, daß $[(CH_3)_3C]_2B - N(CH_3)_2$ kein allplanares C_2BNC_2 -Gerüst besitzen kann. Die für $R_2B - N(CH_3)_2$ -Verbindungen beobachtete relativ geringe Abschirmung des Bor-Kerns war dafür ein erstes Indiz.

Während die Diisopropylborane aufgrund ihrer spektroskopischen Eigenschaften noch weitgehend den Dimethyl- und Diethylboranen gleichen und somit analoge Strukturen besitzen sollten, bewirkt nach den hier diskutierten Daten der sterische Effekt der *tert*-Butyl-Gruppe in Di-*tert*-butylboranen, daß sperrige Substituenten X wie NR₂ aus der C₂BN-Ebene herausgedreht werden. Diese Verdrillung gegen die C₂BN-Ebene führt zu einer Abnahme der Elektronendichte am

Bor-Atom, die sich in einer Entschirmung des Bors, einem Abschirmungsgewinn am N-Kern und einer Entschirmung des borgebundenen C-Atoms äußert.

Für die Förderung unserer Arbeiten danken wir dem Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft, der BASF Aktiengesellschaft und der Chemetall GmbH. Herrn Priv.-Doz. Dr. W. Schmidt danken wir für die Aufnahme der PE-Spektren.

Experimenteller Teil

Die Darstellung der untersuchten Verbindungen ist in Lit.¹⁾ beschrieben. – ¹H-NMR-Spektren wurden mit einem JEOL-FX-90-Gerät (Standard iTMS) aufgenommen, alle übrigen mit einem Bruker WP 200 Multikernresonanzspektrometer (D-Lock, Standards: BF₃. O(C₂H₅)₂ extern für ¹¹B; TMS intern für ¹³C, gesätt. NaNO₃-Lösung extern für ¹⁴N).

Die He(I)-Spektren wurden mit einem Perkin-Elmer-PS-10-Spektrometer registriert. Tab. 4 enthält die beobachteten Banden der untersuchten Verbindungen im Bereich bis 16 eV.

	Ionisierungsenergie (eV)						
	(1)	(2)	(3)	(4)	(5)	(6)	
(R ₃ C) ₂ B-NH ₂	9.40	11.4	12.7	14.4			
(R ₃ C) ₂ B-NR ₂	8.45	9.40	-	-			
R ₂ B-NR ₂	8.92	10.40	11.9	12.4	13.2	15.3	
R-B(NR ₂) ₂	7.63	9.15	11.1	12.0	12.8	-	
$R_3C-B(NR_2)_2$	7.57	8.82	10.0	10.69	12.41	-	
R-B R	7.54	9.35	11.4	11.85	12.2	12.67	
R N R C-B	7.46	9.37	9.92	10.76	11.5	12.35	

Tab. 4. Vertikale Ionisierungsenergien (in eV) einiger Aminoborane ($\mathbf{R} = \mathbf{CH}_3$)

¹⁾ 165. Mitteil.: U. Höbel, H. Nöth und H. Prigge, Chem. Ber. 119, 325 (1986), vorstehend.

- ²⁾ E. Frankland, Liebigs Ann. Chem. 124, 129 (1962).
- ³⁾ E. Wiberg, K. Hertwig und A. Bolz, Z. Anorg. Allg. Chem. **256**, 177 (1948). ⁴⁾ E. Wiberg, FIAT Rev. **23**, 226, 228 (1948).
- ⁵⁾ Methoden der organischen Chemie (Houben-Weyl), 4. Aufl., Bd. 13/3c, Georg Thieme Verlag, Stuttgart 1984.
- ⁶⁾ T. Taeger, Dissertation, Univ. München 1977.
- ⁷⁾ R. Köster und M. A. Graßberger, Liebigs Ann. Chem. 719, 169 (1968).

- ⁸⁾ G. J. Bullen, J. Chem. Soc. A 1970, 992.
- ⁹⁾ F. A. Davies, M. J. S. Dewar und R. Jones, J. Am. Chem. Soc. 90, 706 (1968).

- ¹⁰ F. A. Davies, F. J. Turcki und D. N. Greenly, J. Org. Chem. 36, 1300 (1971).
 ¹¹ J. Kroner, D. Nölle und H. Nöth, Z. Naturforsch., Teil B 28, 416 (1973).
 ¹² J. Kroner, D. Nölle, H. Nöth und W. Winterstein, Z. Naturforsch., Teil B 29, 476 (1974).
- ¹³⁾ J. Kroner, H. Nöth und K. Niedenzu, J. Organomet. Chem. 71, 164 (1974).
- ¹⁴⁾ M. Karplus und J. A. Pople, J. Chem. Phys. 38, 2803 (1963).
- ¹⁵⁾ B. Wrackmeyer und H. Nöth, Publikation in Vorbereitung.
- ¹⁶⁾ In der vorliegenden Arbeit beschränken wir uns auf $R = CH_3$, C_2H_5 , $CH(CH_3)_2$ und $C(CH_3)_3$, da z. B. die erforderlichen Daten für R = C_3H_7 , C_4H_9 , sec- C_4H_9 und i- C_4H_9 für eine hinreichende Anzahl von Substituenten fehlen.
- ¹⁷ H.-O. Kalinowski, St. Berger und S. Braun, ¹³C-NMR-Spektroskopie, Georg Thieme Verlag, Stuttgart 1984.
- ¹⁸⁾ Falls nicht explizit zitiert, werden δ^{11} B-Werte angegeben, die zu finden sind in *H. Nöth* und B. Wrackmeyer, NMR Spectroscopy of Boron in NMR Basic Principles and Progress, Bd. 14, Herausgeber P. Diehl, E. Fluck und R. Kosfeld, Springer Verlag, Heidelberg 1978.
- ¹⁹⁾ R. Hoffmann, Adv. Chem., Ser. 42, 78 (1964).
- ²⁰⁾ W. Beck, H. Becker, H. Nöth und B. Wrackmeyer, Chem. Ber. 105, 2883 (1972).
- ²¹⁾ H. Nöth und B. Wrackmeyer, Chem. Ber. 106, 1145 (1973).
- ²²⁾ H. Nöth und H. Vahrenkamp, J. Organomet. Chem. 12, 23 (1968).
- ²³⁾ B. Wrackmeyer, Prog. Nucl. Magn. Reson. Spectrosc. 12, 227 (1979).
- ²⁴⁾ D. M. Grant und E. G. Paul, J. Am. Chem. Soc. 86, 2984 (1964).
- ²⁵⁾ W. McFarlane, B. Wrackmeyer und H. Nöth, Chem. Ber. 108, 3831 (1975); H. Nöth und B. Wrackmeyer, ebenda 114, 1150 (1981).
- ²⁶⁾ H. Prigge, Dissertation, Univ. München 1984.
- ²⁷⁾ H. Bock und B. G. Ramsey, Angew. Chem. 85, 773 (1973); Angew. Chem., Int. Ed. Engl. 12, 734 (1973).
- ²⁸⁾ H. Bock in Gmelin, Handbuch der Anorganischen Chemie, Ergänzungswerk zur 8. Aufl., Bor, Bd. 23, Springer, Berlin 1975.
- A. Almenningen, G. Gundersen, M. Mangerud und R. Seip, Acta Chem. Scand., Scr. A 35, 341 (1981).
- ³⁰⁾ H. Fußstetter, J. C. Huffman, H. Nöth und R. Schaeffer, Z. Naturforsch., Teil B 31, 1441 (1976).
- ³¹⁾ H. Bock und W. Fuβ, Chem. Ber. 104, 1687 (1971).
- 32) H. Fußstetter, Dissertation, Univ. München 1977.

[98/85]